
Encoding Separation Logic in SMT-LIB v2.5

Radu Iosif2, Cristina Serban2, Andrew Reynolds1, and Mihaela Sighireanu3

1 The University of Iowa
2 Verimag/CNRS/Université de Grenoble Alpes

3 IRIF/Université Paris Diderot

Abstract. We propose an encoding of Separation Logic using SMT-LIB v2.5.
This format is currently supported by SMT solvers (CVC4) and inductive proof-
theoretic solvers (SLIDE and SPEN). Moreover, we provide a library of bench-
marks written using this format, which stems from the set of benchmarks used in
SL-COMP’14 [7].

1 Preliminaries

We consider formulae in multi-sorted first-order logic. A signature Σ consists of a
set Σs of sort symbols and a set Σf of function symbols f σ1···σnσ, where n ≥ 0 and
σ1, . . . , σn, σ ∈ Σ

s. If n = 0, we call f σ a constant symbol. We make the following
assumptions:
1. all signatures Σ contain the Boolean sort B, where > and ⊥ denote the Boolean

constants true and false.
2. Σf contains a boolean equality function ≈σσB for each sort symbol σ ∈ Σs.

Let Vars be a countable set of first-order variables, each xσ ∈ Vars having an as-
sociated sort σ. First-order terms and formulae over the signature Σ (called Σ-terms
and Σ-formulae) are defined as usual. A first-order variable is free if it does not occur
within the scope of a quantifier, and we write ϕ(x) to denote that the free variables of
the formula ϕ belong to the set x.

A Σ-interpretation I maps:
– each sort symbol σ ∈ Σ to a non-empty set σI,
– each function symbol f σ1,...,σn,σ ∈ Σ to a total function f I : σI1 × . . . × σ

I
n → σI

where n > 0, and to an element of σI when n = 0, and
– each variable xσ ∈ Vars to an element of σI.

For an interpretation I a sort symbol σ and a variable x, we denote by I[σ ← S]
and, respectively I[x ← v], the interpretation associating the set S to σ, respectively
the value v to x, and which behaves like I in all other cases. By writing I[σ ← S]
we ensure that all variables of sort σ are mapped by I to elements of S . For a Σ-term
t, we write tI to denote the interpretation of t in I, defined inductively, as usual. A
satisfiability relation between Σ-interpretations and Σ-formulas, written I |= ϕ, is also
defined inductively, as usual. In this case, we say that I is a model of ϕ.

A (multi-sorted first-order) theory is a pair T = (Σ, I) where Σ is a signature and I
is a non-empty set of Σ-interpretations, the models of T . A Σ-formula ϕ is T-satisfiable
if it is satisfied by some interpretation in I.

2 Ground Separation Logic

Let T = (Σ, I) be a theory and let Loc and Data be two sorts from Σ, with no restriction
other than the fact that Loc is always interpreted as a countable set. Also, we consider
that Σ has a designated constant symbol nilLoc. We define the Ground Separation Logic
SL(T)g

Loc,Data to be the set of formulae generated by the following syntax:

ϕ := φ | emp | t 7→ u | ϕ1 ∗ ϕ2 | ϕ1 −−∗ ϕ2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | ∃xσ . ϕ1(x)

where φ is a Σ-formula, and t, u are Σ-terms of sorts Loc and Data, respectively. As
usual, we write ∀xσ . ϕ(x) for ¬∃xσ . ¬ϕ(x). We omit specifying the sorts of variables
and functions when they are clear from the context.

Given an interpretation I, a heap is a finite partial mapping h : LocI ⇀fin DataI.
For a heap h, we denote by dom(h) its domain. For two heaps h1 and h2, we write h1#h2
for dom(h1) ∩ dom(h2) = ∅ and h = h1] h2 for h1#h2 and h = h1 ∪ h2. We define the
satisfaction relation I, h |=SL φ inductively, as follows:

I, h |=SL φ ⇐⇒ I |= φ if φ is a Σ-formula
I, h |=SL emp ⇐⇒ h = ∅

I, h |=SL t 7→ u ⇐⇒ h = {(tI, uI)} and tI 6≈ nilI

I, h |=SL φ1 ∗ φ2 ⇐⇒ there exist heaps h1, h2 s.t. h = h1] h2 and I, hi |=SL φi, i = 1, 2
I, h |=SL φ1 −−∗ φ2 ⇐⇒ for all heaps h′ if h′#h and I, h′ |=SL φ1 then I, h′] h |=SL φ2

I, h |=SL ∃xS .ϕ(x) ⇐⇒ I[x← s], h |=SL ϕ(x), for some s ∈ S I

The satisfaction relation for Σ-formulae, Boolean connectives ∧, ¬, and linear arith-
metic atoms, are the classical ones from first-order logic. Notice that the range of a
quantified variable xS is the interpretation of its associated sort S I. A formula ϕ is said
to be satisfiable if there exists an interpretation I and a heap h such that I, h |=SL ϕ.
We say that ϕ entails ψ, written ϕ |=SL ψ, when every pair (I, h) which satisfies ϕ, also
satisfies ψ.

2.1 SMT-LIB Encoding

We write ground SL formulae in SMT-LIB using the following functions:

(par (Loc Data) (emp Loc Data Bool))

(sep Bool Bool Bool :left-assoc)

(wand Bool Bool Bool :right-assoc)

(par (Loc Data) (pto Loc Data Bool))

(par (Loc) (nil Loc))

Observe that emp, pto and nil are polymorphic functions, with sort parameters Loc and
Data. There is no restriction on the choice of Loc and Data, as shown below. However,
in addition to the classical SMT-LIB typing constraints, the SL theories require that the
heap models are well-typed.

2

The type of heap models is fixed using a special command, not included in SMT-
LIB, declare-heap. For example, assume that Loc is an uninterpreted sort U and
Data is the integer sort Int. The following declarations fix the type of the heap model
and some constant names:

(declare-sort U 0)

(declare-heap (U Int))

(declare-const x U)

(declare-const y U)

(declare-const a Int)

(declare-const b Int)

We write the SL formula emp ∧ ((x 7→ a ∗ y 7→ b) −−∗ (x 7→ nil ∗ >)) in SMT-LIB as
follows:

(and (as emp U Int)

(wand (sep (pto x a) (pto y b)) (sep (pto x (as nil Int)) true))

)

With the declarations above, a separation constraint of the form:

(sep (pto x y) (pto a b))

results in a typing error, because (pto x y) requires the heap to be of type U ⇀ U,
whereas (pto a b) requires the heap to be of type Int ⇀ Int, and combining heaps of
different types is not allowed.

This heap typing restriction is not a limitation of the expressive power of the SMT-
LIB encoding and can be easily overcome by using datatypes (available in SMT-LIB
v2.5). Suppose, for instance that we would like to specify a heap consisting of cells
containing both integer and boolean data. The idea is to declare a union type:

(declare-datatype BoolInt ((cons_bool (d Bool)) (cons_int (d Int))))

(declare-heap (U BoolInt))

and use it to describe a mixed data heap, as in:

(sep (pto x (cons_bool false)) (pto y (cons_int 0)))

The extension of the heap typing with typed locations is presented in Section 3.

2.2 Separation Logic with Inductive Definitions

Let Pred be a set of second-order variables, each Pσ1...σn ∈ Pred having an associated
tuple of parameter sorts σ1, . . . , σn ∈ Σ

s. In addition to the first-order terms built using
variables from Vars and function symbols from Σf , we enrich the language of SL with
the boolean terms Pσ1...σn (t1, . . . , tn), where each ti is a first-order term of sort σi, for
i = 1, . . . , n. Each second-order variable Pσ1...σn ∈ Pred is provided with an inductive

3

definition P(x1, . . . , xn) ← φP(x1, . . . , xn), where φP is a formula in the extended lan-
guage, possibly containing occurrences of P. The satisfaction relation is then extended
as follows:

I, h |=SL Pσ1...σn (t1, . . . , tn) ⇐⇒ I, h |=SL φP(tI1 , . . . , t
I
n)

where φP is the inductive definition of Pσ1...σn . Observe that, given a set of inductive
definitions, the set of possible models for each second-order variable is the least fixed
point of a monotonic and continuous function mapping tuples of sets of models to a set
of models.

2.3 SMT-LIB Encoding

An inductive definition P(x1, . . . , xn) ← φP(x1, . . . , xn) is written in SMT-LIB using a
recursive function definition. For instance, the inductive definition of a doubly-linked
list segment:

dllseg(h, p, t, n)← (emp ∧ h ≈ n ∧ p ≈ t) ∨
(∃xLoc . h 7→ (x, p) ∗ dllseg(x, h, t, n))

is written into SMT-LIB as follows:

(declare-datatype Node ((node (next Loc) (prev Loc))))

(declare-heap (Loc Node))

(define-fun-rec dllseg ((h Loc) (p Loc) (t Loc) (n Loc)) Bool

(or (and emp (= h n) (= p t))

(exists ((x Loc)) (sep (pto h (node x p)) (dllseg x h t n)))

)

)

2.4 A Detailed Example

Let us go through an example step by step. First of all, the preamble of and SMT-LIB
file describing a SL satisfiability query must contain (at least):

(set-logic SEPLOG)

The fragments of this theory are defined in Section 5. If SL is used in combination with
other theories, it is customary to start with:

(set-logic ALL_SUPPORTED)

We consider the slightly modified version of the dllseg definition above, which de-
scribes a doubly-linked list segment with ordered integer data:

dllsegord(h, p, t, n,min)← (emp ∧ h ≈ n ∧ p ≈ t) ∨
(∃xLoc∃dInt . h 7→ (d, x,min) ∗ dllsegord(x, h, t, n, d)) ∧ min ≤ d

Since we do not perform any pointer arithmetic reasoning, we can declare Loc to be an
uninterpreted sort:

4

(declare-sort Loc 0)

We encode the definition of dllsegord as:

(declare-datatype Node ((node (data Int) (next Loc) (prev Loc))))

(declare-heap (Loc Node))

(define-fun-rec dllseg_ord ((h Loc) (p Loc) (t Loc) (n Loc) (min Int)) Bool

(or (and (as emp Loc Data) (= h n) (= p t))

(exists ((x Loc) (d Int))

(and

(sep (pto h (node x p)) (dllseg_ord x h t n))

(<= min d)

)

)

)

)

Let us consider the problem of proving that a dllsegord to which a node is appended is
again a dllsegord, provided that the data of the new node it smaller than the minimal
element of the first dllsegord:

x 7→ (m, u, v) ∗ dllsegord(u, x, z, t, n) ∧ m ≤ n |=SL dllsegord(x, y, z, t,m)

We encode this entailment problem as an assertion asking whether the negated problem
is satisfiable:

(declare-const x U)

(declare-const y U)

(declare-const z U)

(declare-const u U)

(declare-const v U)

(declare-const t U)

(declare-const m Int)

(declare-const n Int)

(assert (not (implies

(and (sep (pto x (node m u v)) (dllseg_ord u x z t n)) (<= m n))

(dllseg_ord x y z t m)

)

)

)

The entailment holds when the assertion is unsatisfiable, which can be checked in the
standard way, using (check-sat). However, the dual problem:

(assert (not (implies

(dllseg_ord x y z t m)

(and (sep (pto x (node m u v)) (dllseg_ord u x z t n)) (<= m n))

)))

5

is satisfiable, and the counter-model can be obtained in the standard way, using
(get-model). Observe that the model of a satisfiable SL query consists of an inter-
pretation of the constants and a specification of the heap.

To comply with the format of SL-COMP’14 [7], the entailment problems may also
be encoded using two separate assertions:

(assert (dllseg_ord x y z t m))

(assert (not (and (sep (pto x (node m u v)) (dllseg_ord u x z t n)) (<= m n))

))

(check-sat)

3 Multi-Sorted Separation Logic

Until now, we considered only problems with one type of locations. However, the heap
typing declaration allows to declare a union type by listing the pair of types for locations
and the corresponding heap cells.

For example, consider a heap storing a nested list. Locations in the inner lists are
typed by RefList and the heap cells at these locations, typed by List, are linked by
one field:

(declare-sort RefList 0)

(declare-datatype List ((c_list (next RefList))))

The heap cells of the upper list are typed by Nll and store a pair of locations, one of
type RefList to the inner list, and a location of a same type of cell, typed by RefNll:

(declare-sort RefNll 0)

(declare-datatype Nll ((c_nll (next RefNll) (down RefList))))

(declare-heap (RefNll Nll) (RefList List))

A heap containing two cell is specified by:

(declare-const x RefNll)

(declare-const y RefList)

(assert (sep (pto x (c_nll (as nil RefNll) y))

(pto z (c_list (as nil RefList)))

(_ emp RefList List))

)

The empty heap is typed by one of the pairs of the union type declared for the heap.

4 Abduction and Frame Inference

Abduction and frame inference (or bi-abduction for both) are problems that occur in
the context of program verification. In this case, the solver is not only required to give a

6

yes/no answer to a satisfiability query, but to infer SL formulae that ensure the validity
of a given entailment. Given SL formulae ϕ(x) and φ(y), and second-order variables
X(x, y) and Y(x, y), we consider the following synthesis problems:
1. The abduction problem asks for a satisfiable definition of a X such that ϕ(x) ∗

X(x, y) |=SL ψ(y). Sometimes X is called an anti-frame. Observe that X ← ⊥ is
always a solution, but not a very interesting one.

2. The frame inference problem asks for a definition of Y such that ϕ(x) |=SL ∃z . ψ(y)∗
Y(x, y), where z = y \ x.

3. The bi-abduction problem asks for both a satisfiable definition of X and a definition
of Y such that ϕ(x) ∗ X(x, y) |=SL ψ(y) ∗ Y(x, y).

The capability of solving the above problems is key to using a given SL solver for
practical program verification purposes. For this reason, we aim at finding a standard
way of specifying these problems in SMT-LIB.

5 Logics

The benchmarks of SL-COMP refer to one of the sub-logics of the many-sorted Separa-
tion Logic. These sub-logics identify fragments of the main logic for which have been
identified efficient techniques for checking satisfiability and entailment.

The sub-logics are named using groups of letters, in a similar way that SMT-LIB.
These letters have been chosen to evoke the restrictions used by the sub-logics:

– QF for the restriction to quantifier free formulas;
– SH for the symbolic heap fragment where formulas are conjunction of atoms and

don’t constraints φ and magic wand;
– LS where the only inductively defined predicate is the acyclic list segment, ls;
– ID for the fragment with user defined predicates;
– LID for the fragment of linear user defined predicates, i.e., inly one recursive call

by definition;
– BI for the fragment with magic wand atoms.

The following logics are used in the SL-COMP benchmark:
– QF SHLS is the logic for the divisions sll0a sat and sll0a entl of SL-

COMP’14. A formula in these scripts is a conjunction of pure and spatial atoms
except magic wand and including list segment predicate atoms.

– QF SHID is the logic for the divisions UDP sat, UDP entl, FDP sat and FDP entl
of SL-COMP’14. The scripts include inductive definitions of predicates and formu-
las that are conjunctions of aliasing, points-to and predicate atoms.

– QF BI corresponds mainly to the logic defined in CVC4 [2], where formulas are
quantifier free and boolean combinations of pure and spatial including magic wand;
the scripts do not include inductive definitions and the heap type is only one pair of
location and data sorts.

7

6 Additional Resources

The quest for a suitable format for SL solvers started with SL-COMP’14 [7], which
adopted the QF S format, described in [6]. The current proposal is inspired by QF S, and
relies on the datatypes introduced SMT-LIB v2.5 for an elegant treatment of union and
record types. The tools supporting SMT-LIB as a native language are:

– CVC4 [3] – a description of the SL format of CVC4 is provided in [2] (a slightly
modified version of the current proposal)

– SLIDE (under construction) – uses the encoding from the current proposal.
– SPEN [1] – a description of the SL format of SPEN (QF S) is available in [6].

Other tools that participated to SL-COMP’14 have been adapted to QF S by means of
a specialized front-end [5]. It is our goal to convince the developers of SL solvers to
adopt SMT-LIB as the native input language of their tools, rather than use a translator
from SMT-LIB. For this purpose, we provide a C++ front-end [4] that can be used to
parse and type check SL inputs encoded in SMT-LIB using the current specification.

References

1. Constantin Enea, Mihaela Sighireanu, and Zhilin Wu. On automated lemma generation for
separation logic with inductive definitions. In Proceedings of ATVA, LNCS, pages 80–96.
Springer, 2015.

2. Andrew Reynolds. CVC4 separation logic format, 2016.
URL: http://church.cims.nyu.edu/wiki/Separation Logic.

3. Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision procedure for
separation logic in SMT. In Proceedings of ATVA, LNCS, pages 244–261. Springer, 2016.

4. Cristina Serban. SMT-LIB front end, 2016.
URL: https://github.com/cristina-serban/slcomp-parser.

5. Mihaela Sighireanu. QF S front end, 2014.
URL: https://github.com/mihasighi/smtcomp14-sl/tree/master/smtlib2parser-1.4.

6. Mihaela Sighireanu. The QF S logic, 2014.
URL: https://github.com/mihasighi/smtcomp14-sl/wiki.

7. Mihaela Sighireanu and David Cok. Report on SL-COMP 2014. Journal on Satisfiability,
Boolean Modeling and Computation, 1, 2014.

8

	Encoding Separation Logic in SMT-LIB v2.5

